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I. The microstructure of real samples of a piezoelectric ceramic (PEC) is an ensemble 
of randomly oriented crystallites, pores, and a thin film of glass phase between them, subject 
to microcracking at some places [i, 2]. Intercrystallite (intergrain) microcracks are formed 
during the preparation of the samples and have a considerable effect on the strength of the 
PEC. The choice of the optimum technological conditions makes it possible to obtain piezo- 
electric components that contain a minimum number of microcracks and are thus stronger. 

The technology for a piezoelectric ceramic based on gradient sintering of a pressed 
ferroelectric powder produces conglomerates (clusters) of crystallites [3, 4]. During sin- 
tering the PEC sample shrinks as the grain structure is formed. The shrinkage is evidently 
caused by the temperature gradients that arise when the sample is heated. The formation of 
the microstructure of the piezoelectric ceramic during sintering passes through several 
stages. In the first stage, individual grains that are nuclei of conglomerates of grains, 
are formed in the pressed powder. The structure formation process encompasses the range of 
temperatures from 800 to 1300 K. In the next stage, new grains around the nuclei, i.e., 
conglomerates become larger (up to i00 grains per conglomerate). In our experiment we ob- 
served preferential growth of conglomerates perpendicular to the direction of the temperature 
gradient at the given point of the sample. When the temperature in the given microvolume 
reaches 1300-1500 K a glass phase, evidently consisting of impurity atoms initially distri- 
buted inside the grains, is formed at the boundaries of the conglomerates. This film acts as 
a lubricant which enables the conglomerates to slip, going over into a closer packing. A 
characteristic feature of this stage is a considerable shrinkage of the sample, consisting 
in the expulsion of the gaseous component and formation of a closed porosity because the 
grain conglomerates shift. Finally, in the final stage the conglomerates "cake together." 
As a result of these processes two types of grain boundaries exist in the piezoelectric 
ceramic at the same time: inside grain conglomerates and between conglomerates. Boundaries 
of the second kind contain a solidified glass phase. The PEC sintering processes described 
above are responsible for the growth of the heating rate of the intermediate product and have 
been studied most fully during the sintering of a piezoelectric ceramic with the TsTS composi- 
tion in a temperature gradient [3]. The study of microstructures at different stages of 
sintering requires much work: accordingly, once the laws governing microstructure formation 
have been determined experimentally, it is desirable to use computer simulation to analyze 
the process. 

2. Let us consider a flat sample of pressed powder PEC in a gradient furnace. The 
problem of sintering a piezoelectric, with the assumption that the temperature gradient is 
constant on a small portion of the front, is given in [5]. Obviously, however, this problem 
must be solved in the rigorous formulation. We assume that the distribution of the tempera- 
ture T in the furnace depends on only one coordinate x and consists of segments of constant 
temperature and a linear dependence on x. A rectangular sample of size [a, b] is introduced 
into the furnace along the x axis at a velocity v. We consider the first fundamental problem 
of heat conduction for a quasilinear heat equation with variable u = T - T o (T o is the am- 
bient temperature) 

ou o (  o~) 0 (  ou) 
O--f = -O-~z k ( u ' c ) -~z § -$yy k ( u , c ) -~y , (2.1) 

the initial condition u(O, x, y) = O, and the boundary conditions 

u(t, O, y) -= ul(t), u(t, a, y) ---- u2(t), u(t, x, O) = u(t, x, b) ---- u~(x, t) 
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Fig. 1 

[k(u, c) is the thermal diffusivity and c is the porosity]. The boundary conditions at 
different times t are shown schematically in Fig. la-c for ua(x, t), respectively: 

0,  x > v t ,  

u3 = A o (vt  - -  x ) / v ,  x ~ vt ,  

u 3 = Aot (a - -  z ) / a ,  u~ = u ,  + (urn - -  u , )  (a - -  x ) / a  

(A 0 is a given constant). We note that for the values of the problem parameters the heat 
front was convex so that the temperature u at the trailing end of the sample introduced into 
the furnace begins to rise after a time At = a/v. The calculation was stopped when the tem- 
perature u (x, g)~u. (u. is the sintering temperature) is reached in the entire region. 

The solution of the problem (2.1) is constructed by the method of sum approximation [6], 
using a purely implicit locally one-dimensional scheme. The finite-difference analog of Eq. 
(2.1) and the initial-value conditions are written. The difference equation is solved by the 
difference factorization method. The temperature field u(x, y) is obtained by solving the 
quasilinear equation by the iteration method at each step with respect to time. 

The choice of the thermal diffusivity k(u, c) should be considered separately. This 
choice is determined by the shrinkage of the PEC. In the calculation we assume that in the 
initial (unsintered) sample the pores are distributed uniformly and their concentration c o 
is given. Given the sintering temperature u, < u m and the velocity v at which the sample 
enters the furnace, we can define k(u, c) as 

i 

k(u, ~) = kl~vp), 
where c V is the heat capacity; p is the density of the sintered material; and X is the ef- 
fective thermal conductivity of the grain mixture. Methods of calculating % for a porous 
medium with allowance for the molecular and radiant components of the heat transfer are 
given in [7, 8]. It was shown there that the main contribution to % at fairly high tempera- 
tures comes from the radiant component and, importantly, a monotonic increase in % of the 
porous material is observed as the temperature rises, although the thermal conductivity of 
the solid component decreases. 

In the given case % depends on the thermal conductivity of the sintered and unsintered 
components. The thermal conductivity of the first part coincides with the thermal conductiv- 
ity of the ready material. The thermal conductivity for the unsintered region is found with 
allowance for the porosity in the region by means of the principle of generalized conductivity 
[7, 8]. Then in the entire region under consideration X depends on the concentration and 
thermal conductivity of both components. The sought component of % is found from the rule 
of interpenetrating components [7]. 

Let us refine the details of the calculation of k(u, c). In accordance with the concepts 
of Sec. 1 we assume that in part of the sample, where u~u., the PEC pressed powder re- 
crystallizes and the forming microstructure shrinks. A structural fragment of the sample is 
simulated in the calculation. For this purpose we choose the neighborhood of the thermal 
front in the form of a rectangle, one side of which is the same order at the width of the 
front (250 ~m)and the other is 400 ~m long. The rectangular region is divided by a square 
net with i0 ~m cells. Each cell is assigned to a powder particles or a pore. We assume 
that the nucleation of a crystallite in the powdery material of the initial sample is ther- 
mally activated; accordingly, each cell (not occupied by a pore) is assigned a random number 
(time of nucleation of an individual crystallite) by means of a random-number generator from 
the exponential distribution [9] 

P ~ j ( t )  = i - -  e x p  ( - - t / ~ i j ) .  
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Here Tij ~ exp (U/kBT) is the average waiting time for the formation of a conglomerate nu- 
cleus at the node of the i-th row and the j-th column; U is the activation energy; k B is 
Boltzmann's constant; and~T is the temperature at the net node with coordinates {i, j}. We 

. . . . . .  . 0 �9 �9 assume that the graln wlth the mlnlmum random waltlng tlme tij Is the flrst to form and its 
immediate neighbors with coordinates {k, s get priority, whereupon the corresponding tks 

0 decrease. In the next step of the calculation we find the minimum grain nucleation timetij 
among all the competing net nodes; the node nearest to an already nucleated crystallite, 
i.e., conglomerate nucleus, may be such a node. In this case we speak of the growth of a 
conglomerate of grains. In the general case the nucleation time t~s for a crystallite along 
with a previously formed conglomerate is found from 

tg.-- 
~J tkt ( 2 . 2 )  t~z = tkZ + S e x p ( i - -  S) 

(S is the area occupied by the conglomerate along with which a grain may be nucleated). We 
note that (2.2) takes into account the nucleation time of neighboring grains. When S is 
still fairly small, crystallites neighboring on the given conglomerate have priority in the 
crystallization processes. As S grows the nucleation of a new conglomerate gains priority. 
The model does not take secondary recrystallization processes into account. 

The phenomenon of macroscopic shrinkage of the sample is simulated when the formation 
of the system of conglomerates has been completed in a region of the order of the width of 
the sintering front. A fragment of the formed PEC microstructure is shown in Fig. 2 (a - 
before shrinkage, b - after shrinkage). The porosity is shaded here and the smaller number 
of conglomerates indicates that they were nucleated earlier. The computational algorithm 
for shrinkage provides for the successively alternating shift of clusters in the directions 
indicated by arrows in Fig. 2b, until all possibilities of their moving has been exhausted. 
They do not change volume, shape, and spatial orientation as the conglomerates move, because 
the grain boundaries of the second kind are rigid [4]. It is assumed in the calculation that 
the shrinkage takes place instantaneously. 

The given model, therefore, considers PEC sintering in three successive main stages: 
first, the motion of the thermal front [solution of problem (2.1) with appropriate thermal 
diffusivity] and subsequent determination of the sintering region (e~u,), second, recrys- 
tallization and shrinkage of the formed structure in that region, and, finally, calculation 
of a new value of k(u, c) followed by the solution of Eq. (2.1). The recrystallization and 
shrinkage of the model fragment of the microstructure were averaged over the results of i00 
realizations to obtain statistically reliable data. 

Briefly we discuss the effect of the kind of crystallite packing. We note that in this 
paper we have studied the microstructural processes on a square net. One can expect that 
models of different packings lead to similar results. We confine the discussion to the 
secondary recrystallization. Anderson et al. [i0] showed that for sufficiently high tem- 
peratures the kinetics of grain growth and the morphology of the microstructure on triangular 
and square nets do not have visible differences. Such data were also obtained for the hexa- 
gonal structure. Since these models show roughly the same results, simulation on square nets 
is justified. As for the choice of the number of nodes of the computational net, during their 
analysis they calculated versions with twice as many nets nodes as in this paper. The results 
of the calculations indicate slight changes in the microstructure of the sample. 

3. Having constructed a numerical model of the PEC structure after sintering we go on 
to simulate the cooling of the sample. This is accompanied by the formation of microcracks 
on part of the cluster boundaries because of the formation of temperature gradients, which 
cause thermal stresses. These stresses have their maximum in the neighborhood of the thermal 
front. It is known [I, 2] that at a temperature T above the Curie temperature T c the piezo- 
electric material is in a paraelectric phase with a cubic lattice, so that microcracking in 
this temperature range (T > T c) is due to the temperature gradients. In the ferroelectric 
phase internal stresses are also caused by phase transformations and the anisotropy of the 
thermal expansion coefficient. Bearing in mind the gradient sintering method, which envisages 
the gradual withdrawal of the sintered PEC sample, we confine the calculations to thermal 
stresses that arise when T > T c. 

A uniform temperature T = T m is established in the entire sample after sintering. Sup- 
pose that the PEC microstructure does not change during cooling and the thermal conductivity 
k(u, c) of the sintered material is determined only by the solid component of the piezoelectric 
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ceramic (without allowance for porosity). The simulation of the motion of the thermal front 
is continued until the temperature reaches T c at one boundary of the sample. 

Simulation of the microcracking of boundaries in the given case consists in considering 
the following stages in succession: finding the distribution of the temperature field u(t, x, 
y) from (2.1) with the initial condition u(0, x, y) = u m and the boundary condition, similar 
to those in Sec. 2, but with v replaced by -v, and at nodes of the net of normal stresses 
isolating rectilinear segments of the cluster boundaries and determining the mean normal 
stresses <o>, and, finally, verifying the conditions for the formation of microcracks on the 
pertinent boundary. 

The thermal stresses are found from the given field u(t, x, y) by means of a finite-dif- 
ference implementation [6] of the method of [ii] and the mean stress along a given boundary 
of length ~ causes cracking upon satisfaction of the inequality 

<~>~>K* (3.1) 
(K* i s  t h e  f r a c t u r e  t o u g h n e s s  o f  t h e  PEC [ 4 ] ) .  From ( 3 . 1 )  we s ee  t h a t  t h e  l o n g e s t  and most  
s t r e s s e d  segmen t s  o f  t h e  c l u s t e r  b o u n d a r y  a r e  s u b j e c t  t o  c r a c k i n g .  

4.  Le t  us d i s c u s s  t h e  r e s u l t s  o f  compute r  s i m u l a t i o n ,  in  a c c o r d a n c e  w i t h  Sees .  2 and 
3. As t h e  model  we chose  a PEC w i t h  t h e  c o m p o s i t i o n  TsTS-83G, f o r  which  T ,  = 870 K, T m = 
1500 K, Tc = 600 K, c ~ = 40%, and K* = ~ .9  MPa-m z/2 [3 ,  4 ] .  C a l c u l a t i o n s  show t h a t  t h e  
m i c r o s t r u c t u r e  o f  t h e  s i n t e r e d  m a t e r i a l  depends  e s s e n t i a l l y  on t h e  i n i t i a l  d e n s i t y  c ~ I n  
p a r t i c u l a r ,  as  t h e  p o r o s i t y  i n c r e a s e s  t h e  mean c o n g l o m e r a t e  r a d i u s  <R> and t h e  s h r i n k a g e  
c o e f f i c i e n t  k& d e c r e a s e .  Th i s  i s  e v i d e n t l y  e x p l a i n e d  by t h e  f a c t  t h a t  when t h e  p o r o s i t y  i s  
high the crystallite phase is enclosed by pores, thus preventing further growth of the con- 
glomerates. The predominance of smaller conglomerates, in turn, results in a closer packing 
of the structure. Moreover, the conglomerates are elongated along the temperature front and 
the shape anisotropy coefficient is -~1.2 (at c o = 40%), which accords with the dat:a of the 
experiments in [3,4]. 

Figure 3 shows the dependence of the fracture of cracked boundaries on the w~.locity v 
of the PEC sample. This range of v was used in the gradient sintering of a PEC with the 
composition TsTS-83G [3, 4]. As follows from Fig. 3, an increase in the velocity does not 
significantly affect the fraction of boundaries subject to microcracking. At the given 
parameters of the material this quantity is stabilized after a value of =10%. The number 
of cluster boundaries formed during sintering in the model region as well as the number of 
microcracks at those boundaries behave in a similar way. Considerably more microcracking is 
observed, however, at substantially higher v. 

In summary, the previously found dependence of the cracking resistance KIc of a material 
on the porosity c o [12-14] is a more important factor in determining the strength of a piezo- 
electric ceramic than is the velocity of the PEC sample in a chosen range of v. 
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CHANGE IN VOLUME OF REAL ELASTOMERS UNDER UNIAXIAL TENSION 

K. F. Chernykh and E. K. Lebedeva UDC 678.4:531 

The characteristic of transverse compression v, generalizing Poisson's ratio to the 
case of moderately large elongations, has been introduced for elastomers. It has been found 
that for i0 rubbers used in the footwear industry v is constant up to a breaking strain of 
the order of 150%. 

The relative change in the volume of the rubber is calculated from the formula [i] 

0 = ( d V - - d V ~  ~ = % 1 ~ 2 i a - - i  

(X i are the principal multiplicities of the elongations). Under uniaxial tension 

~1 = 1 > 1 ,  X2 = G : 1 - 1 / ~ 1 / t  ~ O. 

By S O and S we denote the cross-sectional areas of the sample before and after deforma- 
tion, related by 

S~ = 1112G = t I ( t  § o). ( 1 )  

We introduce the characteristic v as follows 

From (i) and (2) we have 

so/s = i + (~ - t)2v. 

o = ( i  - 2 v ) ( 1  - 1 ) / [1  + ( t  - 1 )2v1 .  

For small strains 

- - i  = e 1, e~ = e 3 = - - v - e l ,  

where e i are the principal relative elongations; and ~ is Poisson's ratio. 
elongations are small (el, e 2 << i) we have 

( 2 )  

(3) 

Since the relative 
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